|
||||||||||||||||
|
||||||||||||||||
|
См. также: | Каталог: Листовые полимерные материалы |
Технологии: Листовые полимерные материалы | |
Наличие в продаже и цены на листовые полимерные материалы |
Александр Гальченко, к.х.н., главный специалист по полимерным материалам
ЗАО "Гельветика-Т"
В настоящее время очень важным вопросом для достижения высокого качества и коммерческого успеха светотехнических изделий, таких как световые короба, лайт-боксы и других изделий рекуламной и светотехнической индустрии, стал выбор полимерного материала для светорассеивателей этих изделий. Для изготовления рассеивателей, используемых в производстве светотехнических изделий различного назначения, применяются традиционные методы - термоформование (вакуумформование, пневмоформование, гнутие и др.), литье под давлением с помощью термопластавтоматов, экструдирование непрерывного профиля на экструзионных линиях. Так как при использовании этих методов применяются различные полимерные материалы, в статье сделан сравнительный анализ наиболее важных эксплуатационных технических характеристик этих материалов и приведены результаты экспериментов по влиянию различных внешних воздействий, которым подвергаются светотехнические изделия в процессе их эксплуатации как в помещении, так и на открытом воздухе. К таким воздействиям относятся температурный режим эксплуатации, влажность окружающей среды и воздействие ультрафиолетового излучения. Приведены данные сравнительных испытаний 17-ти различных отечественных и импортных листовых полимерных материалов до и после воздействия указанных факторов, что позволяет оценить изменения эксплуатационных характеристик светотехнических изделий до и после использования их в рабочих условиях в течение определенного времени. Изучение старения листовых материалов в процессе воздействия влажности, температуры и УФ-облученияЦель работы: Оценить изменение оптических свойств (светопропускание и степень желтизны) и теплостойкости листовых материалов, изготовленных из полимеров различного типа. Характеристика образцов
Аппаратура и условия проведения испытаний:УФ-облучение образцов проводили в камере Suntest CPS, оснащённой ксеноновой лампой, обеспечивающей плотность потока энергии УФ излучения (в области длин волн короче 400 нм) 83 Вт/м². Испытание на воздействие температуры и влажности проводили в камере температура - влажность "Hotpack", США, при температуре 70°С и влажности 96%. Проведено испытание восьми серий образцов до и после воздействия УФ-излучения и камеры "температура - влажность" (ТВ):
Воздействия по сериям 2, 3 и 4 соответствуют времени эксплуатации светотехнических изделий в течение 1 года. Воздействия по сериям 5, 6, 7 и 8 соответствуют времени эксплуатации 2,5-3 года. Оценку воздействия проводили по следующим показателям:
Приведенные данные по коэффициенту светопропускания, индексу желтизны и теплостойкости изученных материалов не обязательно могут соответствовать стандартным характеристическим показателям, полученных в разных странах по различными между собой стандартам и методикам. Целью данной работы было выявление относительных изменений эксплуатационных характеристик различных полимерных материалов разных зарубежных и отечественных производителей после одинаковых для всех материалов внешних воздействий, осуществленных в одинаковых условиях, и испытанных по одинаковым методикам. Испытания проводились в Испытательной лаборатории ОАО Научно-исследовательского института полимерных материалов им.Г.С.Петрова, аккредитованной ГосСтандартом России в качестве независимой и технически компетентной испытательной лаборатории (Аттестат аккредитации N РОСС RU.0001.21 XII-67). Для более точного выявления внешних воздействий были выбраны методики испытаний, позволяющие с высокой точностью зарегистрировать малейшие изменения эксплуатационных характеристик полимерных материалов. Особенно это касается рифленых листов, для которых оптические характеристики измерить достаточно сложно из-за многократного отражения светового потока от рифленой поверхности. Сравнить оптические показатели для листов с различным рисунком поверхности и гладких листов не представляется возможным, и поэтому при анализе результатов испытаний основное внимание уделялось сравнению оптических и теплостойких характеристик внутри каждой партии образцов полимерных материалов до и после различных внешних воздействий. Результаты по оценке теплостойкости материала:
Изучение изменения оптических свойств листовых материалов в процессе воздействия влажности, температуры и УФ-облучения:
Анализ экспериментальных данных, приведенных в таблицах по изменению оптических и теплостойких характеристик различных полимерных материалов после воздействия на них различных параметров, имитирующих эксплуатацию светотехнических приборов в течение разного времени при различных внешних условий окружающей среды, позволяет сделать следующие выводы Листы и профильные светорассеиватели, изготовленные из полипропилена (1), при воздействии на них даже относительно низкой температуры и влажности быстро теряют свою форму, то есть происходит необратимое коробление материала светорассеивателя, что сказывается на его внешнем виде и, таким образом, на коммерческом успехе производителя. К тому же, неэстетический внешний вид еще до воздействия УФ-Тепло-Влажностного режимов (УФ, ТВ, УФ-ТВ), мутность и неоднородность поверхности сильно ухудшается визуально после этих воздействий. К сожалению, эксперимент показывает незначительное увеличение степени желтизны (это вызвано трудностями при измерениях из-за сильной рифлености и коробления материала), но при визуальном осмотре образцов наблюдается их значительное пожелтение и изменение первоначальной формы. При исследовании прозрачных рифленых листов и профильных изделий из "полистирола общего назначения" (2) наблюдается увеличение желтизны в 1,5 раза после УФ и почти в 2 раза после УФ-ТВ. В то же время эксперименты показывают, что использование для изготовления светорассеивателей специальной марки ударопрочного светотехнического матового полистирола "Senosan HP-15U" приводит к тому, что увеличение значения индекса желтизны (ИЖ) происходит только после воздействия ТВ и УФ-ТВ в течение более 2,5 лет. К тому же , экспериментальные данные указывают на то, что это происходит только при наличии высокой влажности, а так как полистирол используется в основном при изготовлении светотехнических изделий для внутренних помещений, где влажность не является критическим фактором, то можно говорить о высокой эффективности использования этого материала для изготовления рассеивателей методом термоформования из листовых заготовок. Удовлетворительно выдерживают все режимы воздействий внешних факторов окружающей среды такие материалы как полиметилметакрилат (оргстекло) и поликарбонаты различных марок. Однако, длительное воздействие ТВ и УФ-ТВ незначительно (на 5%) снижает у оргстекла теплостойкость, а у всех материалов на основе поликарбонатов различных марок увеличивает ИЖ. Как известно, поликарбонат является достаточно гигроскопичным материалом, который быстро набирает влагу даже при комнатной температуре, из-за чего при переработке методами литья под давлением и экструзией его необходимо тщательно высушить. В последнее время вместо прозрачного поликарбоната, особенно, вместо оргстекла и полистирола, пытаются использовать стиролакрилонитрил (САН), который по ударопрочным показателям прочнее полистирола и несколько слабее оргстекла, а по стоимости стоит между ними. Однако, обычный САН на свету очень быстро желтеет и его эксплуатационные характеристики значительно ухудшаются. Нами был исследован САН УФ-стабилизированный в виде листов, выпускаемых на фирме "PLASIT" (Израиль). Результаты экспериментов показали, что после воздействия всех внешних воздействий светопропускание материала не изменяется, но степень желтизны резко возрастает после мощного воздействия ТВ и незначительно - при мягком воздействии УФ-ТВ. В последнее время проявляется интерес к изготовлению рассеивателей из такого нестандартного для светотехники материала, как полиэтилентерефталат. Исследования эксплуатационных характеристик этого материала показали, что различные воздействия окружающей среды практически не оказывают влияние на коэффициент светопропускания и степень желтизны изделий из него, особенно, если материал содержит УФ-стабилизирующие добавки. К сожалению, полиэтилентерефталат обладает невысокой теплостойкостью, что может ограничивать области его применения в светотехнических изделиях только для маломощных объектов. Из результатов проведенных в данной работе исследований можно сделать следующие выводы. Использование различных методов изготовления рассеивателей для светотехнических изделий предполагает применение разных полимерных материалов. Методом термоформования можно с высокой экономической эффективностью изготавливать рассеиватели простой формы из достаточно дешевых и обладающих хорошими эксплуатационными характеристиками листовых материалов, таких как оргстекло, ударопрочный УФ-стабилизированный полистирол, УФ-стабилизированный стиролакрилонитрил, полиэтилентерефталат. Более сложные по форме и дизайну светорассеиватели требуют применения высокоударопрочных и достаточно дорогих материалов - УФ-стабилизированный поликарбонат и ударопрочное оргстекло специальных марок. Наиболее универсальным методом изготовления светорассеивателей для светотехнических изделий в настоящее время является непрерывная экструзия профильных изделий. В этом случае с высокой степенью экономической эффективности (исключая промежуточную стадию получения листового материала) можно использовать широкую гамму полимерных гранулированных материалов - полиметилметакрилат (оргстекло), поликарбонат, полистирол,стиролакрилонитрил, полиэтилентерефталат и их различные модификации по цветовой гамме, горючести, термо- и светостабильности и другим необходимым для светотехничеких изделий эксплуатационным характеристикам. |
|
|||||||||||||||||
|